How to find the inverse matrix of a rectangular matrix in Matlab and Octave
To find the inverse matrix of a rectangular matrix on Matlab and Octave use the function pseudo-inverse pinv()
pinv(M)
The parameter M is a rectangular matrix.
The pinv() function calculates the inverse matrix of matrix M.
What is an inverse matrix? A matrix M is invertible and an inverse matrix M-1 exists if the product M*M-1 is an identity matrix.
Example
Define a rectangular matrix
>> M=[2 4 1;1 3 2]
M =
2 4 1
1 3 2
Calculate the inverse matrix of M using the function pinv()
>> pinv(M)
ans =
0.315789 -0.289474
0.210526 -0.026316
-0.473684 0.684211
Multiply the matrix M by the result of the pinv (M) function by rounding the product
>> round(M*pinv(M))
ans =
1 0
-0 1
If the result is an identity matrix, the pinv(M) matrix is the inverse matrix M-1 of the rectangular matrix M.